Optimizing electron temperature in quantum dot devices

Reducing temperature in quantum devices

Tuesday March 9th 2021

The performance and accuracy of quantum electronics are substantially degraded when the temperature of the electrons is too high. Electron temperatures can be reduced with thermal anchoring and by filtering low and radio frequency noise.

Dilution refrigerator with noise-reducing filters

Ultimately, for high performance filters, electron temperature can approach the phonon temperature (as measured by resistive thermometers) in a dilution refrigerator. This application note describes how to measure and reduce the electron temperature in a typical quantum electronics device using Coulomb blockade thermometry.

Thermometry measurements using a single GaAs/AlGaAs quantum dot in an optimized experimental setup, delivered an electron temperature of 28 ± 2 milli-Kelvin for a dilution refrigerator base temperature of 18 milli-Kelvin.


  • Introduction
  • Device fabrication
  • Experimental setup
  • Testing background noise
  • Measuring quantum dot signatures
  • Parameter extraction from quantum dot measurements
  • Data analysis
  • Further optimization
  • Recommended equipment

Please enter your information to download the application note: